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The present investigation deals with the quantum effects on the Rayleigh –Taylor instability in an 

infinitely electrically conducting inhomogeneous stratified incompressible viscoelastic fluid/plasma 

through a porous medium. The linear growth rate is derived for the case where a plasma with 

exponential density, viscosity, viscoelasticity and quantum parameter distribution is confined 

between two rigid planes. The solution of the linearized equations of the system together with the 

appropriate boundary conditions leads to derive the dispersion relation (the relation between the 

normalized growth rate and square normalized wavenumber) using normal mode technique. The 

behavior of growth rate with respect to quantum effect and kinematic viscoelasticity are examined in 

the presence of porous medium, medium permeability and kinematic viscoelasticity. It is observed 

that the quantum effects bring more stability for a certain wave number band on the growth rate on 

the unstable configuration.  

 

1. Introduction 

Rayleigh-Taylor instability arises from the character of equilibrium of an incompressible 

heavy fluid of variable density (i.e. of a heterogeneous fluid). The simplest, nevertheless 

important, example demonstrating the Rayleigh-Taylor instability is when, we consider two 

fluids of different densities superposed one over the other (or accelerated towards each 

other); the instability of the plane interface between the two fluids, if it occurs, is known as 

Rayleigh Taylor instability. Rayleigh (1900) [1] was the first to investigate the character of 

equilibrium of an inviscid, non- heat conducting as well as incompressible heavy fluid of 

variable density, which is continuously stratified in the vertical direction. The case of (i) two 

uniform fluids of different densities superposed one over the other and (ii) an exponentially 

varying density distribution, was also treated by him. The main result in all cases is that the 

configuration is stable or unstable with respect to infinitesimal small perturbations according 

as the higher density fluid underlies or overlies the lower density fluid. Taylor (1950) [2] 

carried out the theoretical investigation further and studied the instability of liquid surfaces 

when accelerated in a direction perpendicular to their planes. The experimental 
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demonstration of the development of the Rayleigh –Taylor instability (in case of heavier 

fluid overlaying a lighter one, is accelerated towards it) is described by Lewis (1950) [3]. 

This instability has been further studied by many authors e.g. Kruskal and Schwarzschild 

(1954) [4], Hide (1955) [5], Chandrasekhar (1955) [6], Joseph (1976) [7], and Drazin and 

Reid (1981) [8] to include various parameters. Rayleigh-Taylor instability is mainly used to 

analyze the frequency of gravity waves in deep oceans, liquid vapour/globe, to extract oil 

from the earth to eliminate water drops, lazer and inertial confinement fusion etc.  

Quantum plasma can be composed of electrons, ions, positrons, holes, and (or) grains, 

which plays an important role in ultra-small electronic devices which have been given by 

Dutta and McLennan (1990) [9], dense astrophysical plasmas system has been given by 

Madappa et al. (2001) [10], intense laser-matter experiments has been investigated by 

Remington (1999) [11], and non-linear quantum optics has been given by Brambilla et al. 

(1995) [12]. The pressure term in such plasmas is divided to two terms 𝑝𝑝 = 𝑝𝑝𝐶𝐶 + 𝑝𝑝𝑄𝑄 

(classical (𝑝𝑝𝐶𝐶) and quantum (𝑝𝑝𝑄𝑄) pressure) and has been investigated by Gardner (1994) 

[13] for the quantum hydrodynamic model. In the momentum equation, the classical pressure 

rises in the form  

(−∇𝑝𝑝), while the quantum pressure rises in the form  𝑄𝑄 2𝑚𝑚𝑒𝑒 𝑖𝑖 , where 

ℎ~ is the Plank constant, 𝑚𝑚𝑒𝑒 is the mass of electron and 𝑚𝑚𝑖𝑖 is the mass of ion. The linear 

quantum growth rate of a finite layer plasma, in which the density is continuously stratified 

exponentially along the vertical, was studied by Goldston and Rutherford (1997) [14]. 

Nuclear fusion, which is plasma based, is one of the most promising candidates for the 

energy needs of the future when fossil fuels finally run out. It is well known that quantum 

effects become important in the behavior of charged plasma particles when the de Broglie 

wavelength of charge carriers become equal to or greater than the dimension of the quantum 

plasma system, which has been investigated by Manfredi and Haas (2001) [15]. Two models 

are used to study quantum plasmas systems. The first one is the Wigner-Poisson and the 

other is the Schrodinger-Poisson approaches (2001, 2005) [15-17] they have been widely 

used to describe the statistical and hydrodynamic behavior of the plasma particles at quantum 

scales in quantum plasma. The quantum hydrodynamic model was introduced in 

semiconductor physics to describe the transport of charge, momentum and energy in plasma 

(1994) [13].  

A magnetohydrodynamic model for semiconductor devices was investigated by Haas 

(2005) [16], which is an important model in astrophysics, space physics and dusty plasmas. 

The effect of quantum term on Rayleigh-Taylor instability in the presence of vertical and 

horizontal magnetic field, separately, has been studied by Hoshoudy (2009) [18, 19]. The 

Rayleigh-Taylor instability in a non-uniform dense quantum magneto-plasma has been 

studied by Ali et al. (2009) [20]. Hoshoudy (2010) [21] studied quantum effects on Rayleigh-

Taylor instability of incompressible plasma in a vertical magnetic field. Rayleigh-Taylor 

instability in quantum magnetized viscous plasma has been studied by Hoshoudy (2011) 

[22]. External magnetic field effects on the Rayleigh-Taylor instability in an inhomogeneous 

rotating quantum plasma has been studied by Hoshoudy (2012) [23]. In all the above studies, 

the plasma/fluids have been considered to be Newtonian. With the growing importance of 

the nonNewtonian fluids in modern technology and industries, the investigations of such 

fluids are desirable. There are many elastico-viscous constitutive relation or Oldroyd 

constitutive relation. We are interested there in Rivlin-Ericksen Model. Rivlin-Ericksen 

Model (1955) [24] proposed a theoretical model for such elastic-viscous fluid. Molten 

plastics, petroleum oil additives and whipped cream are examples of incompressible 
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viscoelastic fluids. Such types of polymers are used in agriculture, communication 

appliances and in bio-medical applications. Previous work on the effects of incompressible 

quantum plasma on Rayleigh-Taylor instability of Oldroyd model through a porous medium 

has been investigated by Hoshoudy (2011) [25], where the author has shown that both 

maximum 𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥∗ and critical 𝑘𝑘𝑐𝑐∗ point for the instability are unchanged by the addition 

of the strain retardation and the stress relaxation. All growth rates are reduced in the presence 

of porosity of the medium, the medium permeability, the strain retardation time and the stress 

relaxation time. This paper aims at numerical analysis of the effect of the quantum 

mechanism on Rayleigh-Taylor instability for a finite thickness layer of incompressible 

viscoelastic plasma in a porous medium. Hoshoudy (2013) [26] has studied Quantum effects 

on Rayleigh-Taylor instability of a plasma-vacuum. Hoshoudy (2014) [27] studied Rayleigh-

Taylor instability of Magnetized plasma through Darcy porous medium.  

Sharma et al. (2014) [28] has investigated the Rayleigh-Taylor instability of two superposed 

compressible fluids in un- magnetized plasma. The present paper deals with quantum effects 

on the Rayleigh –Taylor instability in an infinitely electrically conducting inhomogeneous 

stratified incompressible, viscoelastic fluid/plasma through a porous medium. The solution 

of the linearized equations of the system together with the appropriate boundary conditions 

leads to the dispersion relation (the relation between the normalized growth rate and square 

normalized wavenumber). The behavior of growth rate with respect to quantum effect and 

kinematic viscoelasticity are examined in the presence of porous medium, medium 

permeability and kinematic viscoelasticity.  

 Formulation of the problem and perturbation equations  

We consider the initial stationary state whose stability is that of an incompressible, 

heterogeneous infinitely conducting viscoelastic Rivlin–Ericksen (Model) [24] fluid of 

thickness h bounded by the planes 𝑧𝑧 = 0 and 𝑧𝑧 = 𝑑𝑑. The variable density, kinematic 

viscosity, kinematic viscoelasticity and quantum pressure are arranged in horizontal strata 

electrons and immobile ions in a homogenous, saturated, isotropic porous medium with the 

Oberbeck– Boussinesq approximation for density variation are considered, so that the free 

surface behaves almost horizontal. The fluid is acted on by gravity force = (0,0, −𝑔𝑔).  

  

 
Fig. 1. Diagram of finite quantum plasma layer. 

Following Hoshoudy (2009) [18, 19], the equations of motion, continuity (conservation of 

mass), incompressibility, Gauss divergence equation and Magnetic induction equations are 

taken as  
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𝜌𝜌𝜀𝜀 𝜕𝜕𝜕𝜕𝜕𝜕 𝜀𝜀 𝑘𝑘11′ 𝜕𝜕𝜕𝜕𝜕𝜕 𝒒𝒒 + 𝑸𝑸,       

    (1)  

  

∇. 𝒒𝒒 = 0,  𝜀𝜀 𝜕𝜕 𝜕𝜕𝜕𝜕𝜌𝜌
 + (𝒒𝒒. ∇)𝜌 = 0,           

             (2, 3)  

  

where 𝒒𝒒, 𝜌𝜌, 𝑝𝑝, 𝜇𝜇, 𝜇𝜇′, 𝑘𝑘1, 𝜀𝜀, 𝑸𝑸 represent velocity, density, pressure, viscosity, 

viscoelasticity, medium permeability, medium porosity and Bohr vector potential, 

respectively. Equation (3) ensures that the density of a particle remains unchanged as we 

follow with its motion. Then equilibrium profiles are expressed in the form 𝒖𝒖𝟎𝟎 = (0,0,0), 

𝜌𝜌0 = 𝜌𝜌0(𝑧𝑧), 𝑝𝑝 = 𝑝𝑝0(𝑧𝑧) and 𝑸𝑸 = 

𝑸𝑸0(𝑧𝑧).   

To investigate the stability of hydromagnetic motion, it is necessary to see how the 

motion responds to a small fluctuation in the value of any flow of the variables. Let the 

infinitesimal perturbations in fluid velocity, density, pressure, magnetic field and quantum 

pressure be taken by  

  

𝑞𝑞 = (𝑢𝑢, 𝑣𝑣, 𝑤𝑤), 𝜌𝜌 = 𝜌𝜌0 + 𝛿𝛿𝜌𝜌, 𝑝𝑝 = 𝑝𝑝0 + 𝛿𝛿𝑝𝑝 and   𝑄𝑄 = 𝑄𝑄0 + 𝑄𝑄1𝑄𝑄𝑥 , 𝑄𝑄𝑦𝑦 , 

𝑄𝑄𝑧𝑧.      (4) Using these perturbations and linear theory (neglecting the 

products of higher order perturbations because their contributions are infinitesimally very 

small), equations (1) - (3) in the linearized perturbation form become  

  
𝜌𝜌𝜀𝜀0 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕 = −𝛻𝛻𝛿𝛿𝑝𝑝 + 𝑔𝑔𝛿𝛿𝜌𝜌 − 𝑘𝑘11 𝜇𝜇 + 𝜇𝜇′ 𝜕𝜕𝜕𝜕𝜕𝜕 𝑞𝑞 + 𝑄𝑄1,     

        (5)  

  

𝛻𝛻. 𝑞𝑞 = 0, 𝜀𝜀 𝜕𝜕𝜕𝜕𝜕𝜕
 𝛿𝛿𝜌𝜌 + 𝑤𝑤 𝑑𝑑𝜌𝜌𝑑𝑑𝑧𝑧0 = 0,         

             (6, 7)  

  

⎡  ⎤ 

𝑸𝑸1 2𝑚𝑚ℎ2𝑚𝑚 ⎢⎢2𝛿𝛿𝜌𝜌𝜌𝜌2 2

 21𝜌𝜌 4𝛿𝛿𝜌𝜌𝜌𝜌2 )2 +⎥⎥.  
 ⎢⎣ 1 2∇𝛿𝛿 1 ∇𝜌𝜌 ∇𝛿𝛿

 ∇𝜌𝜌 𝛿𝛿𝜌𝜌 ∇𝜌𝜌 3 ⎥⎦ 
∇𝜌𝜌 

𝜀𝜀 𝜕𝜕𝜕𝜕 = −𝜕𝜕𝑥𝑥 𝛿𝛿𝑝𝑝 − 𝑘𝑘1 𝜇𝜇 + 𝜇𝜇 𝜕𝜕𝜕𝜕𝑢𝑢 + 𝑄𝑄𝑥𝑥 

  
𝜌𝜌𝜀𝜀0 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕𝑦𝑦 𝑘𝑘11 ′ 𝜕𝜕𝜕𝜕𝜕𝜕 𝑣𝑣 + 𝑄𝑄𝑦𝑦,        (9) = − 𝛿𝛿𝑝𝑝 − 𝜇𝜇 + 𝜇𝜇 

  
𝜌𝜌𝜀𝜀0 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = −𝜕𝜕𝜕𝜕𝑧𝑧 𝛿𝛿𝑝𝑝 − 𝑔𝑔𝛿𝛿𝜌𝜌 − 𝑘𝑘11 𝜇𝜇 ′ 𝜕𝜕𝜕𝜕𝜕𝜕 𝑤𝑤 + 

𝑄𝑄𝑧𝑧,                     (10) + 𝜇𝜇 

  

𝜕𝜕𝜕𝜕𝜕𝜕 𝑑𝑑𝜌𝜌𝑑𝑑𝑧𝑧0, and                           (11)  

  

The Cartesian form of equations (5) - (7) yield  

  

      

𝜌𝜌0 𝜕𝜕𝜕𝜕𝜕𝜕 1 ′ 𝜕𝜕 ,               (8)  

= 
𝑒
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𝜀𝜀 𝛿𝛿𝜌𝜌 = −𝑤𝑤 

 𝜕𝜕𝜕𝜕
 𝜕𝜕
𝜕𝜕

 𝜕𝜕
𝜕𝜕 

𝜕𝜕𝑥𝑥 + 𝜕𝜕𝑦𝑦 + 𝜕𝜕𝑧𝑧 = 0,                             

(12)  

  

where   

  

 2 𝜕𝜕𝑥𝑥2 𝜕𝜕𝑦𝑦2 2𝜌𝜌 

  

 ⎡ 12𝐷𝐷3𝛿𝛿𝜌𝜌 − 𝜌𝜌1 𝐷𝐷𝜌𝜌0𝐷𝐷2𝛿𝛿𝜌𝜌 + ⎤ 
0 

 ℎ2 ⎢ 1 𝜕𝜕2 𝜕𝜕2 1 2𝜌𝜌 3 ⎥ 
𝑄𝑄𝑧𝑧 = 2 𝑚𝑚𝑒𝑒𝑚𝑚𝑖𝑖 ⎢⎢ 2𝜕𝜕𝑥𝑥2 + 𝜕𝜕𝑦𝑦2− 𝜌𝜌0 𝐷𝐷0 + 2 𝜌 𝜌𝜌02 

(𝐷𝐷𝜌𝜌0)3𝐷𝐷𝛿𝛿𝜌𝜌 + ⎥⎥.               (15)  

⎢− 1 𝐷𝐷𝜌𝜌0 𝜕𝜕𝑥𝑥𝜕𝜕22 + 𝜕𝜕𝑦𝑦𝜕𝜕22 + 2𝜌𝜌102 𝐷𝐷𝜌𝜌0𝐷𝐷2𝜌𝜌0 − 𝜌𝜌 103 

(𝐷𝐷𝜌𝜌0)3𝛿𝛿𝜌𝜌⎦⎥ 
 ⎣ 2𝜌𝜌0 

  

Since the boundaries are assumed to be rigid. Therefore the boundary conditions appropriate 

to the problem are  

  

𝑤𝑤 = 0, 𝐷𝐷𝑤𝑤 = 0  at  𝑧𝑧 = 0 and  𝑧𝑧 = 𝑑𝑑, on a rigid surface.                  (16)  

  

To investigate the stability of the system, we analyze an arbitrary perturbation into a complex 

set of normal modes individually. For the present problem, analysis is made in terms of 

twodimensional periodic waves of assigned wavenumber. Thus to all quantities are ascribed 

describing the perturbation dependence on 𝑥𝑥, 𝑦𝑦 and 𝑡𝑡 of the forms  

  

𝑓𝑓1(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝑓𝑓(𝑧𝑧)𝑒𝑒𝑥𝑥𝑝𝑝𝑒𝑒𝑘𝑘𝑥𝑥𝑥𝑥 + 𝑘𝑘𝑦𝑦𝑦𝑦 −𝑛𝑛𝑡𝑡,          

            (17) where  𝑘𝑘𝑥𝑥 and 𝑘𝑘𝑦𝑦 are wavenumbers along 𝑥𝑥 and 𝑦𝑦 directions, 𝑘𝑘 = 

𝑘𝑘𝑥𝑥2 + 𝑘𝑘𝑦𝑦2  is the resultant wavenumber and 𝑛𝑛 is the growth rate which is, in general a 

complex constant.  

Using (17) in (8)-(11) and after some simplification, we obtain the characteristic equation:  

  

(−𝑒𝑒𝑛𝑛) − A ( 𝐷𝐷𝜌𝜌𝜌𝜌00)2𝐷𝐷2w + (−𝑖𝑖𝑖𝑖)(𝐷𝐷𝜌𝜌0) − A (𝐷𝐷𝜌𝜌03)3 − 2A (

𝐷𝐷𝜌𝜌0𝜌𝜌)0𝐷𝐷22𝜌𝜌0𝐷𝐷𝑤𝑤 +    

𝑄

𝑄 
𝑥

𝑥 
= 

ℎ 2 

𝑚

𝑚 
2 𝑒

𝑒 
𝑚

𝑚 
𝑖

𝑖 

𝜕
𝜕 𝜕

𝜕 
𝑥

𝑥 

 

1 
2 𝐷

𝐷 

2 𝛿

𝛿 

𝜌

𝜌 

− 
1 

2 𝜌
𝜌 

0 
𝐷𝐷

𝜌𝜌 
0 𝐷

𝐷 

𝛿𝛿

𝜌𝜌 

+ 

 
1 
2 

 
𝜕

𝜕 

2 

𝜕𝜕
𝑥𝑥 

2 + 
𝜕

𝜕 

2 

𝜕𝜕𝑦
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2 − 
1 

2 𝜌
𝜌 

0 
𝐷

𝐷 

2 𝜌

𝜌 
0 + 

1 
𝜌
𝜌 

2 0 
2 ( 𝐷𝐷

𝜌𝜌 
0 ) 2 𝛿𝛿 𝜌

𝜌 

 ,                 (13)  

𝑄

𝑄 
𝑦
𝑦 

= 
ℎ 2 

2 𝑚
𝑚 

𝑒

𝑒 
𝑚
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𝑖
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𝜕
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𝑦
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2 𝛿
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𝜌

𝜌 

− 
1 
𝜌
𝜌 

2 0 
𝐷𝐷

𝜌𝜌 
0 𝐷

𝐷 

𝛿𝛿

𝜌𝜌 

+ 

 
1 

 
𝜕
𝜕 

2 
+ 

𝜕
𝜕 

2 
− 

1 

0 
𝐷

𝐷 

2 𝜌

𝜌 
0 + 

1 
𝜌
𝜌 

2 0 
2 ( 𝐷𝐷

𝜌𝜌 
0 ) 2 𝛿𝛿 𝜌

𝜌 

 ,                 (14)  



 
Urmil Kumari & Prakash Chand Chopra  

 (Pg. 16020-16030) 

  

16025 

 

Copyright © 2021, Scholarly Research Journal for Interdisciplinary Studies 

 

 

 2 𝜌𝜌0 𝜌𝜌0 

  

−(−𝑒𝑒𝑛𝑛)𝑘𝑘2 − 𝜌𝜌 𝜌𝑔𝑔𝑘𝑘𝑖𝑖𝑖𝑖2 (𝐷𝐷𝜌𝜌0) − 𝜌𝜌 𝜌𝑘𝑘02
𝑘𝑘𝜀𝜀1 𝜇𝜇 + 𝜇𝜇′(−𝑒𝑒𝑛𝑛) + A𝑘𝑘2 (

𝐷𝐷𝜌𝜌𝜌𝜌00
2

)2𝑤𝑤 = 0,             (18)  

0 

  

where   𝐴𝐴 = 4 (𝑖𝑖𝑖𝑖ℎ)2𝑚𝑚𝑘𝑘2𝑒𝑒𝑚𝑚𝑖𝑖.  
For the case of incompressible continuously stratified viscoelastic plasma layer considered 

in a porous medium, the density, viscosity, viscoelasticity and quantum pressure are taken 

as   

  

𝜌𝜌0(𝑧𝑧) = 𝜌𝜌0(0)𝑒𝑒𝑥𝑥𝑝𝑝𝐿𝐿𝑧𝑧𝐷𝐷 , 𝜇𝜇(𝑧𝑧) = 𝜇𝜇0𝑒𝑒𝑥𝑥𝑝𝑝𝐿𝐿𝑧𝑧𝐷𝐷 , 𝜇𝜇′(𝑧𝑧) = 𝜇𝜇0
′ 

(0)𝑒𝑒𝑥𝑥𝑝𝑝𝐿𝐿𝑧𝑧𝐷𝐷,    

  

 −(−𝑒𝑒𝑛𝑛)𝑘𝑘 − − 𝜈𝜈 + 𝜈𝜈 (−𝑒𝑒𝑛𝑛) + A 𝑤𝑤 = 0 

 −(−𝑒𝑒𝑛𝑛)𝑘𝑘 − − 𝜈𝜈 + 𝜈𝜈 (−𝑒𝑒𝑛𝑛) + 𝑤𝑤 = 0 

 𝐿𝐿𝐷𝐷 𝑘𝑘1 (𝑖𝑖𝑖𝑖) 
  

where  𝑛𝑞𝑞2 = 4 𝑚𝑚ℎ𝑒𝑒2
𝑚𝑚𝑘𝑘2𝑖𝑖𝐿𝐿2𝐷𝐷 represents quantum effect.  

In addition to the boundary conditions given by (16), we also have  

  

𝐷𝐷2𝑤𝑤 = 0  at  𝑧𝑧 = 0  and  𝑧𝑧 = 𝑑𝑑.                         (22)  

  

Making use of (21) in (16) and (22) and assuming 𝑤𝑤 = 𝑠𝑠𝑒𝑒𝑛(𝑛𝑛𝑧𝑧)𝑒𝑒𝑥𝑥𝑝𝑝(𝜆𝜆𝑧𝑧), where 

𝑛𝑛 = 𝑖𝑖ℎ1𝜋𝜋, we obtain  

  

 2 2 

(𝜆𝜆2 − 𝑛𝑛2) (−𝑒𝑒𝑛𝑛) − 𝑖𝑖𝑞𝑞  + 𝜆𝜆( −𝑖𝑖𝑖𝑖) − 𝑖𝑖𝑞𝑞  +    

 𝑘𝑘1(𝑧𝑧) = 𝑘𝑘10(0)𝑒𝑒𝑥𝑥𝑝𝑝𝐿𝐿𝑧𝑧𝐷𝐷 , 𝑛𝑛𝑞𝑞(𝑧𝑧) = 𝑛𝑛𝑞𝑞0(0)𝑒𝑒𝑥𝑥𝑝𝑝𝐿𝐿𝑧𝑧𝐷𝐷 , 𝜀𝜀(𝑧𝑧) = 

𝜀𝜀0(0)𝑒𝑒𝑥𝑥𝑝𝑝𝐿𝐿𝑧𝑧𝐷𝐷,  

  

where  𝜌0(0), 𝜇𝜇0(0), 𝜇𝜇0
′ (0), 𝑛𝑛𝑞𝑞0(0), 𝑘𝑘10(0), 𝜀𝜀0(0) and LD are constants.  

Making use of (19) in (18), yield  

  

(−𝑒𝑒𝑛𝑛) − 𝐴𝐴 12𝐷𝐷𝐷𝐷2𝑤𝑤 + ( −𝐿𝐿𝑖𝑖𝑖𝑖𝐷𝐷 ) − 𝐿𝐿13𝐷𝐷𝐷𝐷𝑤𝑤 +    

𝐿𝐿   

           

(19)  

 2 𝑔𝑔𝑘𝑘2𝑘𝑘2𝜀𝜀 ′ 𝑘𝑘2 ,                 

(20)  

𝐿𝐿𝐷𝐷𝑖𝑖𝑖𝑖 𝑘𝑘1 𝐿𝐿2𝐷𝐷 and  

 𝑖𝑖𝑞𝑞22𝑤𝑤 + (−𝑖𝑖𝑖𝑖) − 𝑖𝑖𝑞𝑞2 𝐷𝐷𝑤𝑤 +   

(−𝑒𝑒𝑛𝑛) −𝐷𝐷 

 (𝑖𝑖𝑖𝑖) 𝐿𝐿𝐷𝐷(𝑖𝑖𝑖𝑖)𝐿𝐿𝐷𝐷 

  

   

 2 𝑔𝑔𝑘𝑘2𝑘𝑘2𝜀𝜀 ′ 𝑘𝑘2𝑖𝑖𝑞𝑞2 ,                 (21)  
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 (𝑒𝑒𝑛𝑛)𝑘𝑘 − − 𝜈𝜈 + 𝜈𝜈 (−𝑒𝑒𝑛𝑛) +  = 0 

2𝜆𝜆 (−𝑒𝑒𝑛𝑛) −  +   −  = 0 

Eq. no. (23) with the aid of (25) takes the form  

  

4 𝐿𝐿12 − 𝑛𝑛2(−𝑒𝑒𝑛𝑛) − (𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞2) − 2𝐿𝐿1𝐷𝐷 (−𝐿𝐿𝑖𝑖𝑖𝑖𝐷𝐷 ) − (𝑖𝑖𝑖𝑖𝑖𝑖)𝑞𝑞2𝐿𝐿𝐷𝐷 +   

𝐷𝐷 
  

(𝑒𝑒𝑛𝑛)𝑘𝑘2 − (𝑖𝑖𝑖𝑖𝑔𝑔𝑘𝑘)𝐿2𝐷𝐷 𝑘𝑘𝑘𝑘21𝜀𝜀′(−𝑒𝑒𝑛𝑛) + 
𝑘𝑘(2𝑖𝑖𝑖𝑖𝑖𝑖)𝑞𝑞2 = 0.                  (26)  

 − 𝜈𝜈 + 𝜈𝜈 

  

To facilitate the problem, we introduce the non-dimensional quantities as  

𝑛𝑛∗2 = 𝑖𝑖 𝑖𝑖𝑝𝑝22𝑒 , 𝑛𝑛𝑞𝑞∗2 = 𝑘𝑘 ∗𝑖𝑖2𝑖𝑖𝑞𝑞2𝑝𝑝2𝑒𝑒 , 𝑛𝑛𝜀𝜀∗ = 𝑖𝑖 𝜀𝜀𝑝𝑝𝑒𝑒 , 𝑛𝑛𝜈𝜈∗ = 

𝑖𝑖𝜈𝜈𝑝𝑝𝑒𝑒 , 𝑛𝑛𝜕𝜕∗′ = 𝑣𝑣′, 𝑛𝑛𝑘𝑘∗1 𝜌 𝑖𝑖𝑘𝑘𝑝𝑝1𝑒𝑒
 ∗2𝐿𝐿ℎ𝐷𝐷2 ∗2

 𝑘𝑘2𝐿𝐿2𝐷𝐷, 

𝑔𝑔∗ 𝑖𝑖 𝑔𝑔𝐿 , where 𝑛𝑛𝑝𝑝𝑒𝑒 = 𝑚𝑚 𝑒𝑒2𝜀𝜀0 is the plasma frequency, then using the 

differential equation  

𝑝𝑝𝑒𝑒 𝐷𝐷 

given by (23) in (25) yield  

  

14 − 𝑛𝑛∗2−𝑒𝑒𝑛𝑛∗ − 𝑖𝑖𝑞𝑞∗𝑖𝑖𝑖𝑖2 ∗𝑘𝑘∗2− 12−𝑒𝑒𝑛𝑛∗ − 𝑖𝑖 𝑞𝑞∗𝑖𝑖𝑖𝑖2 ∗𝑘𝑘∗2 +    

  

 ∗ ∗2 ∗2 ∗ 

                    (27)  

  

Let 𝑛𝑛  𝑒𝑒𝑖𝑖 and in the case of 𝑛𝑛  and 𝑖𝑖 ≠ 0 (stable oscillations), the square 

normalized growth rate may be determined from equations (27) as  

  

14 − 𝑛𝑛∗2𝑖𝑖 + 𝑖𝑖𝑞𝑞∗𝛾𝛾2𝑘𝑘∗2− 12𝑖𝑖 + 𝑖𝑖𝑞𝑞∗𝛾𝛾2𝑘𝑘∗2 + −𝑖𝑖𝑘𝑘∗2 + 𝑔𝑔 ∗𝛾𝛾𝑘𝑘∗2 − 

𝑘𝑘𝑖𝑖∗2𝑘𝑘∗𝑖𝑖1𝜀𝜀∗ 𝑛𝑛𝜈𝜈∗ + 𝑖𝑖 𝑛𝑛𝜕𝜕∗′ = 0, (28)  

  

 (𝑖𝑖𝑖𝑖) 𝐿𝐿𝐷𝐷(𝑖𝑖𝑖𝑖)𝐿𝐿𝐷𝐷 

  

   

 2 𝑔𝑔𝑘𝑘2 𝑘𝑘2𝜀𝜀 ′ 𝑘𝑘2𝑖𝑖𝑞𝑞2 ,   
               (23)  

(𝑖𝑖𝑖𝑖)𝐿𝐿𝐷𝐷 𝑘𝑘1 (𝑖𝑖𝑖𝑖) and     

 𝑖𝑖1𝜋𝜋 𝑖𝑖𝑞𝑞2 𝑖𝑖1𝜋𝜋 (−𝑖𝑖𝑖𝑖) 𝑖𝑖𝑞𝑞2 .    
               (24)  

 ℎ (𝑖𝑖𝑖𝑖) ℎ 𝐿𝐿𝐷𝐷 

  

In equation (24), implies that    

  

(𝑖𝑖𝑖𝑖)𝐿𝐿𝐷𝐷     

λ=− 2L
1

D .                               (25)  
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1 =1+ 
𝑘

𝑘 
1 

2 2 , 𝑎
𝑎 

2 = 
𝑘

𝑘 
1 

2 2 , 𝑎
𝑎 

3 = 

𝑖𝑖

 𝑘𝑘1∗ 14 ∗2

 𝑖𝑖𝑖𝑖𝜀𝜀∗𝑘𝑘𝑖𝑖1∗′𝑖𝑖𝑖𝑖∗𝑘𝑘𝑖𝑖1∗ 1 𝑖𝑖2∗𝜋𝜋2𝑛𝑛𝑞𝑞∗2 − 𝑔𝑔∗ = 0,             (29)  

  

𝑎𝑎1𝑖𝑖2 + 𝑎𝑎2𝑖𝑖 + 𝑎𝑎3 = 0,                           (30)  

  

where  

  

𝑛𝑛∗𝜀𝜀𝑛𝑛∗𝑣𝑣′ 𝑛𝑛𝜀𝜀∗∗𝑛𝑛𝜈𝜈∗ ∗ 𝑎𝑎 1+ℎ4ℎ∗ ∗+𝑛𝑛𝑛𝑛 𝑘𝑘∗1𝜋𝜋2 ℎ∗ 

𝑛𝑛+2𝑛𝑛1∗𝜋𝜋22 𝑞𝑞 2 𝑘𝑘∗2 − 4ℎ 𝑔𝑔∗2ℎ+∗𝑖𝑖212 𝑘𝑘𝜋𝜋∗22.               

(31) 𝑛𝑛 ∗ 

 2 ∗2 4ℎ∗ 𝑘𝑘 

  

Case (i). When  𝑛 , in Eq. (29) we find that a1 =1,a2 = 0 and  

4 𝑔𝑔∗ℎ∗2 𝑘𝑘∗2 

𝑎𝑎3 = − ℎ∗2+𝑖𝑖12𝜋𝜋2 and we obtain the classical normalized growth rate ( 𝑖𝑐𝑐) in the 

absence of quantum physics as  

  

 
4 𝑔𝑔∗ℎ∗2 𝑘𝑘∗2 

𝑖𝑖𝐶𝐶 =  ℎ∗2+𝑖𝑖12𝜋𝜋2 .                             (32)  

  

In the absence of viscoelastic parameter 𝑛𝑛𝜕𝜕∗′ = 0, in (29), we obtain the normal growth 

ratewhich is similar as given by Goldston and Rutherford (1997) [14].   

Case (ii). When 𝑛𝑛 ∗, we have a1 =1,a2 = 0 while a3 as in 

equation (31) and the quantum normalized growth rate is given by   

  

 
 2 2 

𝑖𝑖𝑞𝑞 ℎ +𝑖𝑖1𝜋𝜋 − 𝑛𝑛𝑞𝑞∗2𝑘𝑘∗2,              

            (33)  

  

which is in good agreement with the earlier result obtained by Hoshoudy (2009) [18, 19]. It 

is clear from the comparison of expressions (31) and (33) that the quantum term stabilize the 

effect on Rayleigh-Taylor instability problem.   

2. Results and discussion  

We shall now analyze the effect of various parameters on the instability of the system under 

consideration. For this we solve equation (30) using the software Mathematica 5.2. For the 

role of porosity of the porous medium, the medium permeability, kinematic viscosity with 

quantum term one may be referred to (Hoshoudy 2009, [18, 19]). So, we shall confine our 

attention on numerical results to study the role of simultaneous presence of kinematic 

viscoelasticity and quantum effect. For numerical computation we taken following values of 

the relevant parameters 𝑛𝑛



 
Urmil Kumari & Prakash Chand Chopra  

 (Pg. 16020-16030) 

  

16028 

 

Copyright © 2021, Scholarly Research Journal for Interdisciplinary Studies 

 

 

∗, 

respectively.  

Figures 1 and 2 correspond to the variation of the square of the normalized growth rate 

𝑖𝑖2 w.r.t the square normalized wave number 𝑘𝑘∗2 for four different values ofkinematic 

viscoelasticity 𝑛𝑛𝜈𝜈∗′ = 0.1, 0.3, 0.5, 0.9 and kinematic viscosity 𝑛𝑛  = 0.2, 0.4, 0.6, 0.8, 

respectively. It is clear from the graphs that with the increase in kinematic viscosity and 

kinematic viscoelasticity, the growth rate of the unstable perturbation decreases; thereby 

stabilizing the system, however the critical wavenumber kc
∗2 remains the same i.e. 1.6.  

 

 

    

different values of kinematic viscoelasticity Fig. 1. Variation of ∗  𝑖2 with   𝑘𝑘∗2 for 

different values of kinematic viscosity Fig. 2. Variation of   𝑖𝑖2 with  𝑘∗2 for 𝑛𝑛𝜈𝜈∗.  

𝑛𝑛𝜈𝜈′.  

  

Figures 3 and 4 correspond to the variation of the square of the normalized growth rate 

𝑖𝑖2 w.r.t the square normalized wave number 𝑘𝑘∗2  for three different values of medium 

porosity 𝑛𝑛𝜀𝜀∗ = 0.1, 0.3, 0.7 and quantum plasma 𝑛𝑛 , respectively. It is 

clear from the graphs that in the presence of medium porosity 𝑛𝑛𝜀𝜀∗ has a slight stabilizing 

effect, whereas the critical wavenumber remains the same. i.e. 1.6. It is clear from the figure 

that in the presence of quantum plasma 𝑛𝑛𝑞𝑞∗ square of the normalized growth rate 𝑖𝑖2 

increases with the increasing 𝑘𝑘∗2 until arrives at the maximum instability, then decrease 

with the increasing 𝑘𝑘∗2 until arrives at the complete stability, where the maximum instability 

appears at 𝑘𝑘𝑚𝑚𝑚𝑚∗2 
𝑥𝑥=0.7 and the complete stability appears at 𝑘𝑘𝑐𝑐∗2=1.1. This graph 

shows that quantum effect play a major role in securing a complete stability.  
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3. Conclusions  

The effect of quantum term on the Rayleigh-Taylor instability of stratified viscoelastic Rivlin 

–Ericksen (Model) fluid /plasma saturating a porous media has been studied. The principal 

conclusions of the present analysis are as follows:  

1. The kinematic viscoelasticity stabilizing effect on the system and the critical 

wavenumber is 𝑘𝑘𝑐𝑐∗2=1.6.  

2. The kinematic viscosity has a slight stabilizing effect on the system.  

3. The medium porosity has a large stabilizing effect on the system.  

4. Quantum plasma plays a major role in approaching a complete stability implying 

thereby the large enough stabilizing effect on the system.  

 

   

Fig. 3. Variation of   𝑖𝑖2 with   𝑘𝑘∗2 for different Fig. 4. Variation of   𝑖𝑖2 with  𝑘∗2 for different 

values of medium porosity 𝑛𝑛𝜀𝜀∗. values of quantum plasma 𝑛𝑛𝑞𝑞∗.  
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